Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Three learning phases for radial-basis-function networks

Identifieur interne : 001A70 ( Main/Exploration ); précédent : 001A69; suivant : 001A71

Three learning phases for radial-basis-function networks

Auteurs : Friedhelm Schwenker [Allemagne] ; Hans A. Kestler [Allemagne] ; Günther Palm [Allemagne]

Source :

RBID : ISTEX:8FF0EB0790970839FBE68273DAEBB54B1FCCEAB4

Descripteurs français

English descriptors

Abstract

In this paper, learning algorithms for radial basis function (RBF) networks are discussed. Whereas multilayer perceptrons (MLP) are typically trained with backpropagation algorithms, starting the training procedure with a random initialization of the MLP's parameters, an RBF network may be trained in many different ways. We categorize these RBF training methods into one-, two-, and three-phase learning schemes. Two-phase RBF learning is a very common learning scheme. The two layers of an RBF network are learnt separately; first the RBF layer is trained, including the adaptation of centers and scaling parameters, and then the weights of the output layer are adapted. RBF centers may be trained by clustering, vector quantization and classification tree algorithms, and the output layer by supervised learning (through gradient descent or pseudo inverse solution). Results from numerical experiments of RBF classifiers trained by two-phase learning are presented in three completely different pattern recognition applications: (a) the classification of 3D visual objects; (b) the recognition hand-written digits (2D objects); and (c) the categorization of high-resolution electrocardiograms given as a time series (1D objects) and as a set of features extracted from these time series. In these applications, it can be observed that the performance of RBF classifiers trained with two-phase learning can be improved through a third backpropagation-like training phase of the RBF network, adapting the whole set of parameters (RBF centers, scaling parameters, and output layer weights) simultaneously. This, we call three-phase learning in RBF networks. A practical advantage of two- and three-phase learning in RBF networks is the possibility to use unlabeled training data for the first training phase. Support vector (SV) learning in RBF networks is a different learning approach. SV learning can be considered, in this context of learning, as a special type of one-phase learning, where only the output layer weights of the RBF network are calculated, and the RBF centers are restricted to be a subset of the training data. Numerical experiments with several classifier schemes including k-nearest-neighbor, learning vector quantization and RBF classifiers trained through two-phase, three-phase and support vector learning are given. The performance of the RBF classifiers trained through SV learning and three-phase learning are superior to the results of two-phase learning, but SV learning often leads to complex network structures, since the number of support vectors is not a small fraction of the total number of data points.

Url:
DOI: 10.1016/S0893-6080(01)00027-2


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Three learning phases for radial-basis-function networks</title>
<author>
<name sortKey="Schwenker, Friedhelm" sort="Schwenker, Friedhelm" uniqKey="Schwenker F" first="Friedhelm" last="Schwenker">Friedhelm Schwenker</name>
</author>
<author>
<name sortKey="Kestler, Hans A" sort="Kestler, Hans A" uniqKey="Kestler H" first="Hans A." last="Kestler">Hans A. Kestler</name>
</author>
<author>
<name sortKey="Palm, Gunther" sort="Palm, Gunther" uniqKey="Palm G" first="Günther" last="Palm">Günther Palm</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8FF0EB0790970839FBE68273DAEBB54B1FCCEAB4</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0893-6080(01)00027-2</idno>
<idno type="url">https://api.istex.fr/document/8FF0EB0790970839FBE68273DAEBB54B1FCCEAB4/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001051</idno>
<idno type="wicri:Area/Istex/Curation">000F99</idno>
<idno type="wicri:Area/Istex/Checkpoint">001124</idno>
<idno type="wicri:doubleKey">0893-6080:2001:Schwenker F:three:learning:phases</idno>
<idno type="wicri:Area/Main/Merge">001B63</idno>
<idno type="wicri:Area/Main/Curation">001A70</idno>
<idno type="wicri:Area/Main/Exploration">001A70</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Three learning phases for radial-basis-function networks</title>
<author>
<name sortKey="Schwenker, Friedhelm" sort="Schwenker, Friedhelm" uniqKey="Schwenker F" first="Friedhelm" last="Schwenker">Friedhelm Schwenker</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Neural Information Processing, University of Ulm, D-89069 Ulm</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
<orgName type="university">Université d'Ulm</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Kestler, Hans A" sort="Kestler, Hans A" uniqKey="Kestler H" first="Hans A." last="Kestler">Hans A. Kestler</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Neural Information Processing, University of Ulm, D-89069 Ulm</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
<orgName type="university">Université d'Ulm</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Palm, Gunther" sort="Palm, Gunther" uniqKey="Palm G" first="Günther" last="Palm">Günther Palm</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Neural Information Processing, University of Ulm, D-89069 Ulm</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
<orgName type="university">Université d'Ulm</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Allemagne</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Neural Networks</title>
<title level="j" type="abbrev">NN</title>
<idno type="ISSN">0893-6080</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">14</biblScope>
<biblScope unit="issue">4–5</biblScope>
<biblScope unit="page" from="439">439</biblScope>
<biblScope unit="page" to="458">458</biblScope>
</imprint>
<idno type="ISSN">0893-6080</idno>
</series>
<idno type="istex">8FF0EB0790970839FBE68273DAEBB54B1FCCEAB4</idno>
<idno type="DOI">10.1016/S0893-6080(01)00027-2</idno>
<idno type="PII">S0893-6080(01)00027-2</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0893-6080</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3D object recognition</term>
<term>Classification of electrocardiograms</term>
<term>Clustering and vector quantization</term>
<term>Decision trees</term>
<term>Initialization and learning in artificial neural networks</term>
<term>Optical character recognition</term>
<term>Radial basis functions</term>
<term>Support vector learning</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Reconnaissance optique de caractères</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, learning algorithms for radial basis function (RBF) networks are discussed. Whereas multilayer perceptrons (MLP) are typically trained with backpropagation algorithms, starting the training procedure with a random initialization of the MLP's parameters, an RBF network may be trained in many different ways. We categorize these RBF training methods into one-, two-, and three-phase learning schemes. Two-phase RBF learning is a very common learning scheme. The two layers of an RBF network are learnt separately; first the RBF layer is trained, including the adaptation of centers and scaling parameters, and then the weights of the output layer are adapted. RBF centers may be trained by clustering, vector quantization and classification tree algorithms, and the output layer by supervised learning (through gradient descent or pseudo inverse solution). Results from numerical experiments of RBF classifiers trained by two-phase learning are presented in three completely different pattern recognition applications: (a) the classification of 3D visual objects; (b) the recognition hand-written digits (2D objects); and (c) the categorization of high-resolution electrocardiograms given as a time series (1D objects) and as a set of features extracted from these time series. In these applications, it can be observed that the performance of RBF classifiers trained with two-phase learning can be improved through a third backpropagation-like training phase of the RBF network, adapting the whole set of parameters (RBF centers, scaling parameters, and output layer weights) simultaneously. This, we call three-phase learning in RBF networks. A practical advantage of two- and three-phase learning in RBF networks is the possibility to use unlabeled training data for the first training phase. Support vector (SV) learning in RBF networks is a different learning approach. SV learning can be considered, in this context of learning, as a special type of one-phase learning, where only the output layer weights of the RBF network are calculated, and the RBF centers are restricted to be a subset of the training data. Numerical experiments with several classifier schemes including k-nearest-neighbor, learning vector quantization and RBF classifiers trained through two-phase, three-phase and support vector learning are given. The performance of the RBF classifiers trained through SV learning and three-phase learning are superior to the results of two-phase learning, but SV learning often leads to complex network structures, since the number of support vectors is not a small fraction of the total number of data points.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Tübingen</li>
</region>
<settlement>
<li>Ulm</li>
</settlement>
<orgName>
<li>Université d'Ulm</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Schwenker, Friedhelm" sort="Schwenker, Friedhelm" uniqKey="Schwenker F" first="Friedhelm" last="Schwenker">Friedhelm Schwenker</name>
</region>
<name sortKey="Kestler, Hans A" sort="Kestler, Hans A" uniqKey="Kestler H" first="Hans A." last="Kestler">Hans A. Kestler</name>
<name sortKey="Kestler, Hans A" sort="Kestler, Hans A" uniqKey="Kestler H" first="Hans A." last="Kestler">Hans A. Kestler</name>
<name sortKey="Palm, Gunther" sort="Palm, Gunther" uniqKey="Palm G" first="Günther" last="Palm">Günther Palm</name>
<name sortKey="Palm, Gunther" sort="Palm, Gunther" uniqKey="Palm G" first="Günther" last="Palm">Günther Palm</name>
<name sortKey="Schwenker, Friedhelm" sort="Schwenker, Friedhelm" uniqKey="Schwenker F" first="Friedhelm" last="Schwenker">Friedhelm Schwenker</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:8FF0EB0790970839FBE68273DAEBB54B1FCCEAB4
   |texte=   Three learning phases for radial-basis-function networks
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024